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ABSTRACT 

The current study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a 

channel of a porous extensile surface subject to the convective boundary condition. The Lie group analysis 

is performed for the transformation of the current model in a system of nonlinear ordinary differential 

equations that are numerically decoded with the help of MATLAB integrated function bvp4c. The effects 

of various flow control parameters are investigated for the momentum, temperature and diffusion profiles, 

as well as for the wall shearing stress and heat transfer presuming two cases, prescribed surface temperature 

(PST) and prescribed convective boundary (PCB). Finally, the results are described from the material point 

of view. In general, the PST and PCB boundary conditions are highly functional in various industrial, 

biological and engineering applications. In addition, a significant result of the current analysis is that the 

viscosity of the nanofluid increases with the gradual increase in the Deborah number, which increases the 

resistance to flow and there is a transverse flow in the channel near the stretching surface.  
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1  Introduction  

Nanofluids are a newly invented heat transfer fluids having higher thermal conductivity at low particle 

diffusions compared to conventional fluids. They are made by steadily suspending and consistently 

dispersing a few of ultrafine, nonmetallic or nano-scale metallic particles in ordinary heat transfer fluids. 

This idea of nanofluid was established by Choi [1]. Recent investigators have discovered that replacing 

conservative refrigerants with nanofluids can be beneficial in processes such as improving heat transfer 

efficiency in nuclear and engineering environments, household refrigerators / freezers; and cooling of 

automobile engines [2-7]. A mathematical model is developed by Buongiorno [8] to study the transfer of 

heat in nanofluids by convection taking into account two essential effects, namely Brownian diffusion and 

thermophoresis diffusion.  

In addition, magneto-hydrodynamics (MHD) is the relationship between electromagnetic fields and 

conductive fluids. Numerous applications of nanofluids are found in the areas of manufacturing, 

engineering and science mainly in the design of heat exchange devices, accelerators and MHD generators, 

etc. [9-12].  

A captivating and highly unresolved tribological matter refers to the influence of elastico-viscosity on 

lubrication phenomena in thin film flows. The practice of adding polymers to mineral oils, known as multi-

grade oils, has been recognized since the mid-1990s [13-15]. These additions force the resulting lubricants 

to become non-Newtonian and viscoelastic by exerting a viscosity dependent on the shear rate [16,17]. The 
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classic Newtonian fluid model that contains the Navier-Stokes equations cannot demonstrate the highly 

non-linear connection between shear stress and strain rate of non-Newtonian fluids [18-20]. Maxwell fluid 

is a simple class of rate-type viscoelastic material that has the features of the fluid relaxation phase, namely 

the viscosity - modulus of elasticity ratio. It eliminates the complex effects of shear-related viscosity and 

thus makes it possible to demonstrate the influence of fluid elasticity on the characteristics of its boundary 

layer [19]. Harris [13] developed for the first time the constitutive equation of the upper convected Maxwell 

Fluid (UCM) in order to model the lubricant behavior of non-Newtonian fluid. Due to the proliferation of 

practical applications in industrial and manufacturing procedures, such as bioengineering and plastic 

manufacturing, paper production, food processing and aerodynamic extrusion of plastic films, researchers 

have increased attention to the investigation of boundary layer flows of non-Newtonian fluids. [21,22].  

Norwegian mathematician Sophus Lie developed a classic scheme called the Lie group transformation 

to discover invariant and similarity of solutions [23-27]. Lie group analysis provides an appropriate method 

to address nonlinear equations. The Lie group transformation proposes a precise mathematical formulation 

of perceptive thoughts of symmetry and offers beneficial techniques for the analytical resolution of 

nonlinear differential equations. Lie group analysis is an emergent field of mathematics with many 

applications. Researchers are currently analyzing the transformations of Lie groups for Newtonian and non-

Newtonian fluid flows [26, 28].  

Though the Maxwell nanofluid model can explain the time dependent stress relaxation of viscoelastic 

fluid hosting solid nanoparticles, the non-Newtonian fluid with enhanced heat transfer has a great 

opportunity to contribute to industrial and hemodynamic purposes. By observing previous research, the 

prime interest is to analyze the time dependent two-dimensional laminar flow of elastico-viscous nanofluid 

in a convective boundary porous stretched surface channel incorporating the Maxwell's rheological fluid 

using the Lie group transformations. 

2  Mathematical model 

In the extant model, an unsteady 

movement of an elastico-viscous 

Maxwell nanofluid with the effect of 

magnetic field passing through a 

channel of stretching porous surface 

with convective boundary conditions is 

considered. To explain the somatic 

model, the Cartesian co-ordinate 

system is introduced where x -axis is 

taken along the channel surfaces and y

-axis is vertical to the parallel channel 

surfaces, shown in Fig. 1. 

Fig. 1. Physical model. 
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When elastic stress is functional to a non-Newtonian fluid, the resultant strain is dependent on time, 

which is illustrated by the relaxation time factor. The constitutive equation for a Maxwell fluid following 

Fetecau and Fetecau [19] is 

 = p − +I S  (1) 

where is the Cauchy stress tensor and the extra stress tensor S satisfies 

 ( )( )0
trtr
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d

dt
 
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in which 0  is the viscosity, 0S   is the fluid relaxation time. Here, V means the velocity of the fluid. 

Then the equations of flow are given by 
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Again, considering the Buongiorno model integrating the combined effects of thermophoresis and 

Brownian diffusions [8, 29], the equations of energy and diffusion are 
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The solutions of the model depend on the nature of the prescribed thermal boundary condition [21]. The 

corresponding boundary conditions are: 

Case 1: Prescribed surface temperature (PST) 
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Case 2: Prescribed convective boundary (PCB) case 
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(8) 

where S  is the stress relaxation time, p is the nanofluid pressure, DB  is the Brownian diffusion, DT  is 

the thermophoresis diffusion, B0 is the magnetic field strength applied in the y-axis, lu  is the stretching 

velocity, lv is the suction velocity, 
20 0

(1 )
( ) x

l h
t

T T T T
−

= + −

 
and

 20 0
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l h

t
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−
= + −  are the temperature and the 
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concentration respectively at the upper plate supposed to vary along the surface and in time, 0T and 0C  are 

the temperature and concentration at bottom the plate and fh , *
fh are convective heat transfer coefficient and 

convective mass transfer coefficient respectively. Here , , ,  , , pC      and   are the dynamic and 

kinematic viscosity, density, thermal conductivity, thermal diffusivity, specific heat and electrical 

conductivity respectively.  

The following dimensionless variables are being introduced  

 
0 0

0 0 0

w
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− −
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 (9) 

Then introducing the above variables in equations (4)–(6), the dimensionless PDE model is given by the 

following equations  
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Here the dimensionless parameters, Re wu h


=  is the Reynolds number, Pr
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
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 in the above equations to get  
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Dimensionless prescribed surface temperature (PST) boundary conditions are
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3  Method of transformation 

The importance of similarity solutions in many areas of science and engineering is limitless. It is 

compulsory to seek a universal symmetrical approach applicable to certain mathematical models. The Lie 

group analysis transformation procedure is a solid technique for the theory of continuous symmetry of 

numerical structures which is immensely functional for various fields of modern mathematical physics. 

This analysis should provide a new methodology for studying the continuous symmetries of the model 

equations governing heat transfer fluxes in Maxwell nanofluids. In progress, this theory reduces the number 

of independent parameters of the governing partial differential equations considered for the physical model 

and maintains the invariant structure of the model with the corresponding initial conditions and limits. Due 

to the unsteady flow (0 < 𝑡 < 1) of fluid in a channel, the following two parameters of groups of linear 

transformations are to be considered for the analysis of Lie groups (Uddin et al. [30]): 
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where i, i (i = 1, 2, . . . , 14) are constants. We seek the values of i, i so that the Eqs (13)–(15) are 

invariant under the transformations connected by the following relations  

 

1 1 1
2 1 3 1 4 5 1 6 1 7 1 8 12 2 2

1 1
9 10 1 11 1 12 1 13 1 14 12 2

2 1 3 4 5 1 6 1 7 8

9 1 10 1 11 12 13 14 1

2 2

0 2 2

0 2 0

0

            

          

         

        

= − = = = − = − = = −

= = − = − = = =

= = = = = = =

= − = = = = =

 

(18) 

With these relationships of i, i, Eq (17) turns into  
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From the absolute invariant relations, the similarity parameters are described as  
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Using Eq (20) into Eqs (13)–(15), we obtain the following similarity equations, 
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The transformed PST boundary conditions are 
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Following the similar procedure the PCB boundary conditions take the form  
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=   is the Magnetic field parameter;  is the stretching 

parameter; w

w

v
w u

f = − is the suction parameter; fh h
Bi


=  and 

*
* fh h

B i


=  are the Biot numbers for convective 

heat and mass transfer respectively.  

Finally, the coefficient of skin friction estimates the friction force applied to the surface and the Nusselt 

number characterizes the heat flux from a heated surface to a fluid. The skin friction coefficient Cf and the 

local Nusselt number Nu are defined respectively as 

 

(1) and (1)fC f Nu    −  (26) 

4  Numerical methods 

Equations (21)–(23) combined with the boundary conditions (24) and (25) respectively are solved 

numerically using collocation method. The analysis is made for various parameters such as Maxwell 

parameter  , stretching parameter  , suction parameter fw, magnetic field parameter M, Prandtl number 

Pr, Eckert number Ec, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le. 

The mesh size is used as 0.01 =  and the tolerance factor is set to 10-6. On the basis of the present model, 

we are considering  0,1  as the domain of the channel problem.  
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5  Results and Discussion 

The renovation of the model equations trims down the mathematical work extensively. Graphical 

representations of consequences are very constructive to discuss the physical features offered by the 

solutions.  

  

Fig. 2.    Velocity distribution for various values of 

Deborah number  . 
Fig. 5.   Velocity distribution for various values of 

suction parameter fw. 

  

Fig. 3.    Temperature distribution for various values 

of Deborah number  . 
Fig. 6.   Temperature distribution for various values 

of suction parameter fw. 

  

Fig. 4.    Diffusion distribution for various values of 

Deborah number  . 
Fig. 7.    Diffusion distribution for various values of 

suction parameter fw 
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Fig. 8.    Velocity distribution for various values of 

stretching parameter  . 
Fig. 11.   Velocity distribution for various values of 

magnetic parameter M. 

  

Fig. 9.   Temperature distribution for various values 

of stretching parameter  . 
Fig. 12.   Temperature distribution for various values 

of Eckert number Ec. 

  

Fig. 10.  Diffusion distribution for various values of 

stretching parameter  . 
Fig. 13.   Temperature distribution for various values 

of Brownian parameter Nb.   
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The time during which the non-Newtonian fluid gains stability after the application of an elastic stress 

is the relaxation time. This time factor is higher for highly viscous fluids. The stress relaxation factor  , 

named as the Deborah number, is a dimensionless variable that treats the fluid relaxation time to its 

characteristic time scale. Here, 0 =  gives the result for the viscous incompressible Newtonian fluid. 

Liquids with a small number of Deborah have a liquid-like behavior, while a large number of Deborah 

communicate with solids-like substances that can better conduct and preserve heat.  Therefore, it is found 

that progressively increasing the Deborah number can enlarge the viscosity of the fluid, which increases 

the resistance to flow and, consequently, the thickness of the hydrodynamic boundary layer decreases for 

the Maxwell fluid, as revealed in Fig 2 for PST and PCB cases. The Deborah number decreases the thermal 

boundary layer thickness, but gives a slight upward effect for the PCB near the bottom plate, as illustrated 

in Fig 3. Figure 4 describes the rising effect of Deborah number  on the diffusion profile. 

Figures 5–7 represent the effect of suction parameter fw on velocity, thermal energy and concentration 

distributions, respectively. It is apparent that velocity and energy distributions are increasing due to higher 

suction for both the PST and PCB boundary surface. Actually, the forced suction brings a force to the fluid 

in the channel which in turn improves the movement and energy within the fluid. 

From Fig 8, it is observed that the stretching velocity parameter   enhances strength to the fluid velocity 

to increase the momentum distribution with the increase of stretching effect near the upper surface. Figures 

9–10 demonstrates the effect of stretching parameter on energy and diffusion distributions respectively. 

The effects of magnetic field on momentum for both cases are demonstrated in Fig. 11. It is established 

that an enhancing magnetic parameter M trims down the velocity of fluids. This is the consequence of the 

effect of the magnetic field applied on an electrically conductive fluid, which creates a drag force called 

Lorentz force against the flow direction along the surface to slow down velocity. As a result, the magnetic 

field is liable for retarding the fluid flow.  

Figure 12 illustrates that the temperature profiles increases with the increasing value of Eckert number 

Ec indicating that the dissipative effect of the fluid enhances the energy distribution. The Brownian 

diffusion develops the thermal transport in the fluid, as noticed in Fig. 13. The Eckert number Ec and 

Brownian motion parameter Nb increase heat transport in the fluid, which is an important mechanism for 

the enhancement of heat transfer in nanofluids.   

Additionally, the effect of stress relaxation parameter Deborah number on the skin fraction coefficient (f 
) and the local Nusselt number (–), from Eq (26), are arranged in the Table 1 considering Re = 1, M = 1, 

Pr = 6.838, Ec = 0.2, Le = 5, Nb = 0.16, Nt = 0.4, γ = 0.1, fw = 0.5, Bi =0.1, and Bi*=0.3.  

6 Conclusion 

The major consequences drawn from the study of the present model can be summarized as follows: 

• The temperature distribution of nanofluid is prominent in the state of the PCB.  

• The viscous dissipation and Brownian diffusion develop the thermal boundary layer thickness.  

• The Deborah number and magnetic field parameter are liable for reducing the hydrodynamic boundary 

layer thickness. 

• The effects of stretching and suction parameters on the fluid velocity are significant.  
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In conclusion of the present study, it can be affirmed that this model presenting phenomena of velocity 

control and improvement of the transfer of heat in the liquid can be an excellent opportunity to develop the 

performances of cooling of the mechanical systems with less friction. 

Table 1:  Skin Friction f  and heat transfer (–) with Parameters Variations for different values of 

Deborah number  . 

Deborah 

number  

  

PST condition  PCB condition 

Upper plate,  

 = 1 

Lower plate,  

 = 0 
 

Upper plate,  

 = 1 

Lower plate,  

 = 0 

f  – f  –  f  – f  – 

0 

1 

1.5 

2 

2.96864 

3.70291 

4.02107 

4.31336 

-1.92124 

-2.01223 

-2.07573 

-2.14192 

-2.72599 

-3.7475 

-4.19155 

-4.60863 

-1.13957 

-0.9088 

-0.80379 

-0.70325 

 

2.96864 

3.70291 

4.02107 

4.31336 

0.04842 

0.04553 

0.04384 

0.04214 

-2.72599 

-3.7475 

-4.19155 

-4.60863 

-1.19157 

-0.96326 

-0.85972 

-0.76064 
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